Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells.

نویسندگان

  • S D Thorpe
  • C T Buckley
  • T Vinardell
  • F J O'Brien
  • V A Campbell
  • D J Kelly
چکیده

The objective of this study was to investigate the influence of dynamic compressive loading on chondrogenesis of mesenchymal stem cells (MSCs) in the presence of TGF-beta3. Isolated porcine MSCs were suspended in 2% agarose and subjected to intermittent dynamic compression (10% strain) for a period of 42 days in a dynamic compression bioreactor. After 42 days in culture, the free-swelling specimens exhibited more intense alcian blue staining for proteoglycans, while immunohistochemical analysis revealed increased collagen type II immunoreactivity. Glycosaminoglycan (GAG) content increased with time for both free-swelling and dynamically loaded constructs, and by day 42 it was significantly higher in both the core (2.5+/-0.21%w/w vs. 0.94+/-0.03%w/w) and annulus (1.09+/-0.09%w/w vs. 0.59+/-0.08%w/w) of free-swelling constructs compared to dynamically loaded constructs. This result suggests that further optimization is required in controlling the biomechanical and/or the biochemical environment if such stimuli are to have beneficial effects in generating functional cartilaginous tissue.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of insulin-like growth factor-induced Wharton jelly mesenchymal stem cells toward chondrogenesis in an osteoarthritis model

Objective(s): This study aimed to determine the collagen type II (COL2) and SOX9 expression in interleukin growth factor (IGF-1)-induced Wharton’s Jelly mesenchymal stem cells (WJMSCs) and the level of chondrogenic markers in co-culture IGF1-WJMSCs and IL1β-CHON002 as osteoarthritis (OA) cells model. Materials and Methods: WJMSCs were induced with IGF1 (75, 150, and 300 ng/ml) to enhance their ...

متن کامل

Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel.

Mesenchymal stem cells (MSCs) are an attractive cell source for cartilage tissue engineering given their ability to undergo chondrogenesis in 3D culture systems. Mechanical forces play an important role in regulating both cartilage development and MSC chondrogenic gene expression, however, mechanical stimulation has yet to enhance the mechanical properties of engineered constructs. In this stud...

متن کامل

A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells.

There is great interest in how bone marrow derived stem cells make fate decisions. Numerous studies have investigated the role of individual growth factors on mesenchymal stem cell differentiation, leading to protocols for cartilage, bone and adipose tissue. However, these protocols overlook the role of biomechanics on stem cell differentiation. There have been various studies that have applied...

متن کامل

Designing of Human Cartilage Tissue, by Differentiation of Adipose-Derived Stem Cells With BMP-6 in Alginate Scaffold

Purpose: In the present study the effect of BMP-6 was investigated on chondrogenesis of adiposederived stem cells. Materials and Methods: Mesenchymal stem cells derived from subcutaneous adipose tissue were cultured on alginate scaffold to induce chondrogenesis in experimental group, with chondrogenic medium having BMP-6 growth factor for 3 weeks. In control group medium without BMP-6 was appli...

متن کامل

Dynamic compression stimulates proteoglycan synthesis by mesenchymal stem cells in the absence of chondrogenic cytokines.

The objective of this study was to evaluate the effect of dynamic compression on mesenchymal stem cell (MSC) chondrogenesis. Dynamic compression was applied to agarose hydrogels seeded with bone marrow-derived adult equine MSCs. In the absence of the chondrogenic cytokine transforming growth factor beta (TGFbeta), dynamic compression applied for 12 h per day led to significantly greater proteog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 377 2  شماره 

صفحات  -

تاریخ انتشار 2008